The Segal conjecture for topological Hochschild homology of Ravenel spectra

نویسندگان

چکیده

In the 1980’s, Ravenel introduced sequences of spectra X(n) and T(n) which played an important role in proof Nilpotence Theorem Devinatz–Hopkins–Smith. present paper, we solve homotopy limit problem for topological Hochschild homology X(n), is a generalized version Segal Conjecture cyclic groups prime order. This result first step towards computing algebraic K-theory using trace methods, approximates sphere spectrum precise sense. We under assumption that canonical map $$T(n)\rightarrow BP$$ commutative ring can be rigidified to $$E_2$$ spectra. show obstruction our holding described terms explicit class Atiyah-Hirzebruch spectral sequence.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Spectra and Topological Hochschild Homology

A functor is defined which detects stable equivalences of symmetric spectra. As an application, the definition of topological Hochschild homology on symmetric ring spectra using the Hochschild complex is shown to agree with Bökstedt’s original ad hoc definition. In particular, this shows that Bökstedt’s definition is correct even for non-connective, non-convergent symmetric ring spectra. Mathem...

متن کامل

Filtered Topological Hochschild Homology

In this paper we examine a certain filtration on topological Hochschild homology. This filtration has the virtue that it respects the cyclic structure of topological Hochschild homology, and therefore it is compatible with the cyclotomic structure used to define topological cyclic homology. As an example we show how the skeleton filtration of a simplicial ring gives rise to spectral sequences s...

متن کامل

Localization Theorems in Topological Hochschild Homology and Topological Cyclic Homology

We construct localization cofiber sequences for the topological Hochschild homology (THH) and topological cyclic homology (TC) of spectral categories. Using a “global” construction of the THH and TC of a scheme in terms of the perfect complexes in a spectrally enriched version of the category of unbounded complexes, the sequences specialize to localization cofiber sequences associated to the in...

متن کامل

Topological Hochschild Homology of Thom Spectra Which Are E∞-ring Spectra

We identify the topological Hochschild homology (THH) of the Thom spectrum associated to an E∞ classifying map X → BG, for G an appropriate group or monoid (e.g. U , O, and F ). We deduce the comparison from the observation of McClure, Schwanzl, and Vogt that THH of a cofibrant commutative S-algebra (E∞ ring spectrum) R can be described as an indexed colimit together with a verification that th...

متن کامل

Topological Hochschild Homology of Thom Spectra and the Free Loop Space

We describe the topological Hochschild homology of ring spectra that arise as Thom spectra for loop maps f : X → BF , where BF denotes the classifying space for stable spherical fibrations. To do this, we consider symmetric monoidal models of the category of spaces over BF and corresponding strong symmetric monoidal Thom spectrum functors. Our main result identifies the topological Hochschild h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Homotopy and Related Structures

سال: 2021

ISSN: ['2193-8407']

DOI: https://doi.org/10.1007/s40062-021-00275-7